Peningkatan Pertumbuhan dan Hasil Tanaman Padi (Oryza sativa L.) dengan Pemberian Pupuk Organik dan Jarak Tanam

Amir M, Muh Fahyu Sanjaya, Ansar Muhajir, Ridha Anugrah Putra

Abstract


Penelitian ini bertujuan untuk menguji pengaruh dosis pupuk organik pada berbagai jarak tanam terhadap pertumbuhan dan hasil padi  . Penelitian ini dilakukan di Desa Tubo Selatan, Sulawesi Barat, menggunakan metode rancangan petak terbagi dengan pola rancangan acak kelompok (RAK) dimana Faktor pertama yaitu Jarak Tanam (J) yang terdiri dari 3 taraf: jarak tanam 22 x 22 cm (J1), 22 x 25 cm (J2), dan 22 x 30 cm (J3). Faktor kedua yaitu pupuk organik (P) yang terdiri dari 3 taraf: Tanpa pupuk (P1), 4 kg pupuk organik (P2) dan 8 kg pupuk organik (P3). Setiap perlakuan diulang sebanyak 3 ulangan, sehingga seluruhnya berjumlah 27 petak. Data dianalisis dengan analisis sidik ragam (anova) pada taraf kepercayaan 95% dengan menggunakan software R-Statistik. Beda nyata tiap perlakuan pupuk organik dan jarak tanam diuji lanjut DMRT. Hasil penelitian menunjukkan bahwa pemberian pupuk organik dosis 8 kg dan jarak tanam 22x30 cm memberikan hasil optimal pada tinggi tanaman walaupun tidak signifikan, sedangkan jumlah anakan, berat gabah basah, berat gabah kering & berat gabah isi menunjukkan signifikan hanya pada perlakuan pupuk organik. Perlakuan kombinasi jarak tanam 22 x 30 cm dan pupuk organik dosis 8 kg mampu meningkatkan efisiensi serapan hara, dengan pengaruh signifikan pada berat gabah isi dibandingkan perlakuan lainnya. Penelitian ini menunjukkan bahwa jarak tanam yang ideal dalam budidaya tanaman padi ialah 22x30 cm dengan dosis pupuk organik terbaik yaitu 8 kg untuk semua variabel yang diamati.

Keywords


padi sawah; pupuk organik; jarak tanam; produktivitas

Full Text:

PDF

References


Adviany, I., & Maulana, D. D. (2019). Pengaruh Pupuk Organik dan Jarak Tanam terhadap C-Organik, Populasi Jamur Tanah dan Bobot Kering Akar serta Hasil Padi Sawah pada Inceptisols Jatinangor, Sumedang. Agrotechnology Research Journal, 3(1), 28–35. https://doi.org/10.20961/agrotechresj.v3i1.30382

Bai, X., Tang, J., Wang, W., Ma, J., Shi, J., & Ren, W. (2023). Organic amendment effects on cropland soil organic carbon and its implications: A global synthesis. CATENA, 231, 107343. https://doi.org/10.1016/j.catena.2023.107343

BPS. (2023). Luas Panen dan Produksi Padi di Indonesia 2023 (Angka Sementara) (H. dan P. Direktorat Statistik Tanaman Pangan, Ed.; Vol. 5). BPS-Statistics Indonesia.

Ernest, B., Eltigani, A., Yanda, P. Z., Hansson, A., & Fridahl, M. (2024). Evaluation of selected organic fertilizers on conditioning soil health of smallholder households in Karagwe, Northwestern Tanzania. Heliyon, 10(4), e26059. https://doi.org/10.1016/j.heliyon.2024.e26059

Fogliatto, S., Zafferoni, G., Zefelippo, M., De Palo, F., Airoldi, G., Dinuccio, E., & Vidotto, F. (2024). Feasibility of mechanical rice transplanting in organic Italian rice system. Renewable Agriculture and Food Systems, 39, e23. https://doi.org/10.1017/S1742170524000188

Hassan, I. A. (2018). The Effect of Planting Distance and Spraying with Different Concentrations of (Micronate15) on Vegetative Growth and Yield Traits of Pea Plant (Pisum Sativum L.). Kurdistan Journal of Applied Research, 3(2), 13–19. https://doi.org/10.24017/science.2018.3.3

Huang, J., Li, Y., Shi, Y., Wang, L., Zhou, Q., & Huang, X. (2019). Effects of nutrient level and planting density on population relationship in soybean and wheat intercropping populations. PLOS ONE, 14(12), e0225810. https://doi.org/10.1371/journal.pone.0225810

Leue, M., Beck-Broichsitter, S., Felde, V. J. M. N. L., & Gerke, H. H. (2019). Determining Millimeter‐Scale Maps of Cation Exchange Capacity at Macropore Surfaces in Bt Horizons. Vadose Zone Journal, 18(1), 1–11. https://doi.org/10.2136/vzj2018.08.0162

Li, F., Yuan, Y., Shimizu, N., Magaña, J., Gong, P., & Na, R. (2023). Impact of organic fertilization by the digestate from by-product on growth, yield and fruit quality of tomato (Solanum lycopersicon) and soil properties under greenhouse and field conditions. Chemical and Biological Technologies in Agriculture, 10(1), 70. https://doi.org/10.1186/s40538-023-00448-x

Liu, W., Yang, Z., Ye, Q., Peng, Z., Zhu, S., Chen, H., Liu, D., Li, Y., Deng, L., Shu, X., & Huang, H. (2023). Positive Effects of Organic Amendments on Soil Microbes and Their Functionality in Agro-Ecosystems. Plants, 12(22), 3790. https://doi.org/10.3390/plants12223790

Nookabkaew, S., Rangkadilok, N., Prachoom, N., & Satayavivad, J. (2016). Concentrations of Trace Elements in Organic Fertilizers and Animal Manures and Feeds and Cadmium Contamination in Herbal Tea (Gynostemma pentaphyllum Makino). Journal of Agricultural and Food Chemistry, 64(16), 3119–3126. https://doi.org/10.1021/acs.jafc.5b06160

Obaid, Abdulraheem. A., Khalil, Nazik. H., Al-Alawy, H. H., & Hasan Fahmi, A. (2022). Effect of planting density, foliar spraying and overlapping system on the growth and productivity using soilless culture system. Journal of the Saudi Society of Agricultural Sciences, 21(8), 506–510. https://doi.org/10.1016/j.jssas.2022.02.004

Ramesh, K., & Raghavan, V. (2024). Agricultural Waste-Derived Biochar-Based Nitrogenous Fertilizer for Slow-Release Applications. ACS Omega, 9(4), 4377–4385. https://doi.org/10.1021/acsomega.3c06687

Stape, J. L., Silva, C. R., & Binkley, D. (2022). Spacing and geometric layout effects on the productivity of clonal Eucalyptus plantations. Trees, Forests and People, 8, 100235. https://doi.org/10.1016/j.tfp.2022.100235

Susanti, W. I., Cholidah, S. N., & Agus, F. (2024). Agroecological Nutrient Management Strategy for Attaining Sustainable Rice Self-Sufficiency in Indonesia. Sustainability, 16(2), 845. https://doi.org/10.3390/su16020845

Thomas, C. L., Acquah, G. E., Whitmore, A. P., McGrath, S. P., & Haefele, S. M. (2019). The Effect of Different Organic Fertilizers on Yield and Soil and Crop Nutrient Concentrations. Agronomy, 9(12), 776. https://doi.org/10.3390/agronomy9120776

Toselli, M., Baldi, E., Ferro, F., Rossi, S., & Cillis, D. (2023). Smart Farming Tool for Monitoring Nutrients in Soil and Plants for Precise Fertilization. Horticulturae, 9(9), 1011. https://doi.org/10.3390/horticulturae9091011

Xu, H., Wang, S., Jiang, N., Xie, H., Chen, Z., Zhang, Y., & Li, S. (2024). Organic fertilizer prepared by thermophilic aerobic fermentation technology enhanced soil humus and related soil enzyme activities. Soil Use and Management, 40(2). https://doi.org/10.1111/sum.13059

Yang, X., Li, G., Jia, X., Zhao, X., & Lin, Q. (2020). Net nitrogen mineralization delay due to microbial regulation following the addition of granular organic fertilizer. Geoderma, 359, 113994. https://doi.org/10.1016/j.geoderma.2019.113994

Zhang, K., Wei, H., Chai, Q., Li, L., Wang, Y., & Sun, J. (2024). Biological soil conditioner with reduced rates of chemical fertilization improves soil functionality and enhances rice production in vegetable-rice rotation. Applied Soil Ecology, 195, 105242. https://doi.org/10.1016/j.apsoil.2023.105242




DOI: http://dx.doi.org/10.35329/agrovital.v10i1.5904

Article Metrics

Abstract views : 254 times | PDF - 223 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Alamat Penyunting & Distribusi:

Kantor Lembaga Penelitian dan Pengabdian Masyarakat Universitas Al Asyariah Mandar Sulbar
Jl. Budi Utomo No. 2 Manding Polewali Mandar
Telp/Fax: (0428) 21038

Email: agrovitalfip@gmail.com

Website: https://journal.lppm-unasman.ac.id/index.php/agrovital/index

Penerbit:
Lembaga Penelitian dan Pengabdian Masyarakat Universitas Al Asyariah Mandar

Indexed by:

       

   

Member of:

 


Mitra Asosiasi:

Peragi


 

Creative Commons License
Agrovital is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

https://ihdn.ac.id/